6 research outputs found

    VEHICLE TRACKING AND SPEED ESTIMATION FROM UNMANNED AERIAL VEHICLES USING SEGMENTATION-INITIALISED TRACKERS

    Get PDF
    We propose an effective vehicle tracker and speed estimation method from Unmanned Aerial Vehicles (UAVs) videos that can be deployed on UAV-embedded edge devices. Our tracker uses segmentation-derived vehicle regions to initialise a MOSSE tracker. This enables road operators to make multipurpose use of segmentation outputs while still being able to track the vehicles across frames. The vehicle speed is estimated using flight parameters derived from the UAV's flight computer and the vehicle displacement across frames. We trained CABiNet on the UAVid urban segmentation benchmark dataset and finetuned it on a dataset collected at our study site. A mean Intersection over Union (mIoU) of 0.73 was obtained for the vehicle class. Our segmentation-initialised MOSSE tracker was evaluated on the VisDrone Multi-Object Tracking (MOT) benchmark dataset and compared against traditional methods that utilise object regions for tracker initialisation. Our approach yielded a Multi-Object Tracking Precision (MOTP) of 0.872 compared to 0.830 when using YOLOv4. Our vehicle speed estimations approach was evaluated using a privately collected ground truth vehicle speed dataset. Our approach yielded a Root Mean Square Error (RMSE) between 3.42 and 16.12 km/hr across different flight configurations. Finally, our approach was deployed on an NVIDIA Jetson Xavier NX edge device and could be executed at 8 Frames Per Second (FPS). The results indicate that our approach is a simple yet fast alternative to traditional tracking methods while producing multipurpose segmentation information

    MultEYE: Monitoring system for real-time vehicle detection, tracking and speed estimation from UAV imagery on edge-computing platforms

    Get PDF
    We present MultEYE, a traffic monitoring system that can detect, track, and estimate the velocity of vehicles in a sequence of aerial images. The presented solution has been optimized to execute these tasks in real-time on an embedded computer installed on an Unmanned Aerial Vehicle (UAV). In order to overcome the limitation of existing object detection architectures related to accuracy and computational overhead, a multi-task learning methodology was employed by adding a segmentation head to an object detector backbone resulting in the MultEYE object detection architecture. On a custom dataset, it achieved 4.8% higher mean Average Precision (mAP) score, while being 91.4% faster than the state-of-the-art model and while being able to generalize to different real-world traffic scenes. Dedicated object tracking and speed estimation algorithms have been then optimized to track reliably objects from an UAV with limited computational effort. Different strategies to combine object detection, tracking, and speed estimation are discussed, too. From our experiments, the optimized detector runs at an average frame-rate of up to 29 frames per second (FPS) on frame resolution 512 Ă— 320 on a Nvidia Xavier NX board, while the optimally combined detector, tracker and speed estimator pipeline achieves speeds of up to 33 FPS on an image of resolution 3072 Ă— 1728. To our knowledge, the MultEYE system is one of the first traffic monitoring systems that was specifically designed and optimized for an UAV platform under real-world constraints

    Post-Disaster Building Damage Detection from Earth Observation Imagery using Unsupervised and Transferable Anomaly Detecting Generative Adversarial Networks

    Get PDF
    We present an unsupervised deep learning approach for post-disaster building damage detection that can transfer to different typologies of damage or geographical locations. Previous advances in this direction were limited by insufficient qualitative training data. We propose to use a state-of-the-art Anomaly Detecting Generative Adversarial Network (ADGAN) because it only requires pre-event imagery of buildings in their undamaged state. This approach aids the post-disaster response phase because the model can be developed in the pre-event phase and rapidly deployed in the post-event phase. We used the xBD dataset, containing pre-and post-event satellite imagery of several disaster-types, and a custom made Unmanned Aerial Vehicle (UAV) dataset, containing post-earthquake imagery. Results showed that models trained on UAV-imagery were capable of detecting earthquake-induced damage. The best performing model for European locations obtained a recall, precision and F1-score of 0.59, 0.97 and 0.74, respectively. Models trained on satellite imagery were capable of detecting damage on the condition that the training dataset was void of vegetation and shadows. In this manner, the best performing model for (wild)fire events yielded a recall, precision and F1-score of 0.78, 0.99 and 0.87, respectively. Compared to other supervised and/or multi-epoch approaches, our results are encouraging. Moreover, in addition to image classifications, we show how contextual information can be used to create detailed damage maps without the need of a dedicated multi-task deep learning framework. Finally, we formulate practical guidelines to apply this single-epoch and unsupervised method to real-world applications

    Infrastructure degradation and post-disaster damage detection using anomaly detecting generative adversarial networks

    Get PDF
    Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads.Financial support has been provided by the Innovation and Networks Executive Agency (INEA) under the powers delegated by the European Commission through the Horizon 2020 program “PANOPTIS–Development of a decision support system for increasing the resilience of transportation infrastructure based on combined use of terrestrial and airborne sensors and advanced modelling tools”, Grant Agreement number 76912

    Infrastructure degradation and post-disaster damage detection using anomaly detecting Generative Adversarial Networks

    No full text
    Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads
    corecore